I will be speaking on my research into topological data analysis for
political data sets at the University of Edinburgh, at 4:10pm on 15th
October, in Room 6206, James Clerk Maxwell Building.
Data Analysis on politics data
Data analysis has played a growing role in politics for many years now;
analyzing polling data to predict outcomes of
elections is perhaps the
most well-known application.
A different approach that has gotten more and more traction lately is to
analyze the voting behaviour of elected representatives as a way to
understand the inner workings of parliaments, and to monitor the elected
representatives to make sure they behave as they once promised. Sites
like GovTrack and
VoteView bring machine learning and data
analysis tools to the citizens, and illustrate and visualize the
groupings and behaviour in political administration.
One key step to make parliamentary data accessible for data analysis is
to recognize that the data set is inherently geometric; the sequence of
votes cast in a parliamentary session can be seen as coordinates for a
very high-dimensional vector -- say +1 for Yea, -1 for Nay, and 0
otherwise. This way, each member of parliament is represented by a
vector; and members who agree with each other will be close to each
other in the resulting vector space.
We can use dimension reduction techniques on these vectors to find
essential structures within parliaments. At a first approach, this
tends to uncover the party structure of parliament:
This image shows the US House of Representatives, laid out in 2d by
PCA coordinates from their voting records. The span from Democrats
(blue) to Republicans (red) is clearly seen.
This plot shows the UK House of Commons during the period 2001-2005,
again with 2d positions generated by a PCA dimension reduction on the
voting data. Colours are for political parties, Labor (red), Tory
(blue), and LibDem (yellow) the dominating parts, and smaller parties
in other colours.
Topological Data Analysis
Topological Data Analysis is a brand new field of research, where
algebraic and combinatorial topology is used to refine geometric
methods. Topology encodes «closeness» and provides a robust approach to
qualitative features in data sets.
In particular, for the political data, we are using a technique called
Mapper. This technique, invented in the Applied Topology group at
Stanford, produces easy to analyze topological models induced by point
clouds: the points are divided using measurement functions, and then
clustered into closely connected groups. Whenever groups overlap, they
are connected, producing a simplified model for the space suggested by
the data points.
Applying this on topological data, we can discover sub-groups in the US
House of Representatives that were not visible by a PCA dimension
reduction. Not only that, but we can measure political unrest by the
fragmentation of parliament into larger or smaller interest groups.
Mapper analyses of House of Representatives voting records, using Iris
from Ayasdi.